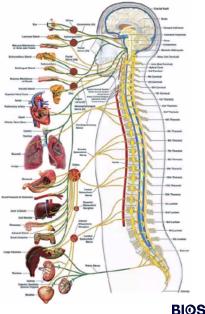
Bayesian optimization of protocols for neurostimulation Lorenz Wernisch BIOS Health Ltd 14 Sep 2021

Bioelectronic therapies

Organs are controlled and regulated by peripheral nervous system

Traditional **biochemical** interventions

Bioelectronic medicines leverage nervous system directly with highly specific, fast and dynamic interventions



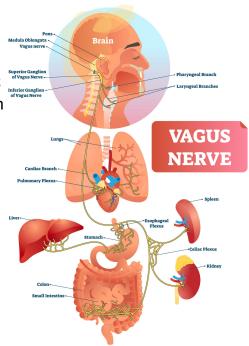
Vagus nerve

Part of **parasympathetic** (calming) nervous system

Two way traffic:

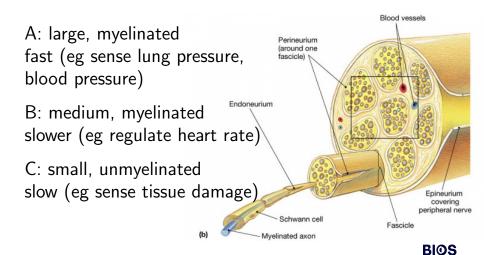
Afferent messages from organs to brain

Efferent messages from brain to organs

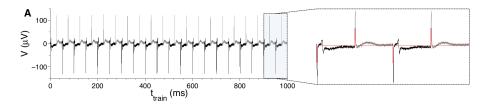


Cross section of a nerve

Hierarchical organisation into fascicles, types of fibres:



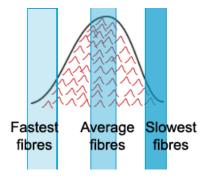
Stimulation by electric pulses



Train of alternating-monophasic stimulation

M Ward et al, A Flexible Platform for Biofeedback-driven Control and Personalization of Electrical Nerve Stimulation, Therapy, 2015

Nerve response to stimulation



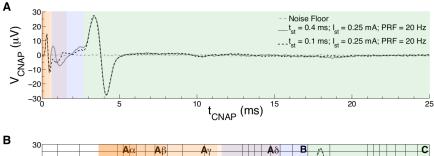
Individual nerve cells triggered by **stimulation** electrodes

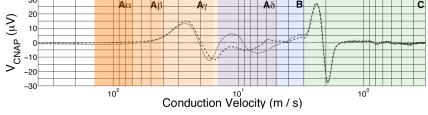
Action potentials travel at (slightly) different speeds

Response recorded by recording electrodes

Artificial responses affect organs similar to natural ones

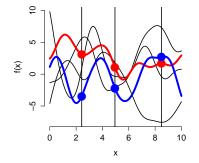
Velocity chart for fibre types





BI₀S

Gaussian process prior

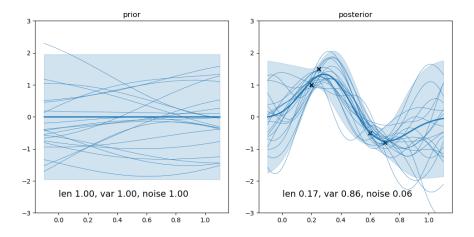


Family of functions via covariance K on input points x $y \sim N(0, K_{xx})$ Prediction for x^* from (x, y) $\mathbf{v}^* \sim \mathcal{N}(K_{\mathbf{x}^*\mathbf{x}}K_{\mathbf{y}\mathbf{y}}^{-1}\mathbf{v}, \Sigma)$ $\Sigma = K_{x^*x^*} - K_{x^*x} K_{yy}^{-1} K_{yy^*}$

Gaussian kernel $cov(x, x^*) = \theta_1 exp(-\theta_2(x - x^*)^2)$

Power from flexibility in kernel design and combinations **BIOS**

GP posterior uncertainty and samples



Estimate GP parameters by maximum likelihood

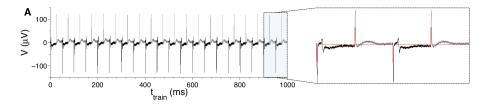
BI₀S

Vagus nerve stimulation in rats

M Ward et al, A Flexible Platform for Biofeedback-driven Control and Personalization of Electrical Nerve Stimulation, Therapy, 2015

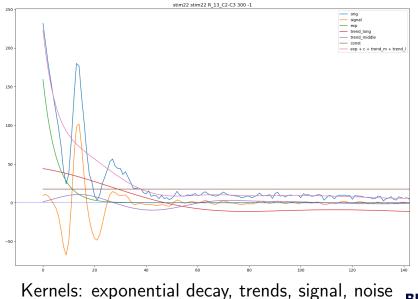
- Trials with 12 subjects
- Left cervical branch of vagus nerve
- 7 pulse currents 0, 0.2,..., 1.2
- ▶ 4 pulse durations 0.1, 0.2, 0.4, 0.8, for 20 secs
- Alternating monophasic, 10Hz, for 1 second
- Responses recorded

Stimulation by electric pulses



1s train of alternating-monophasic stimulation, 10Hz

Response decomposition by GP



BI0S

Modelling nerve responses by GPs

gp for cnap data sub-SA2p1_2_SPARC_10Hz_LcVNS

2

1

-1

2

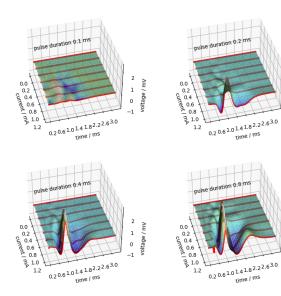
1

0

Stimulation: pulse duration, current

Response: time series

GP model: Input: curr x dur x time Ouput: voltage



Finding optimal stimulation parameters

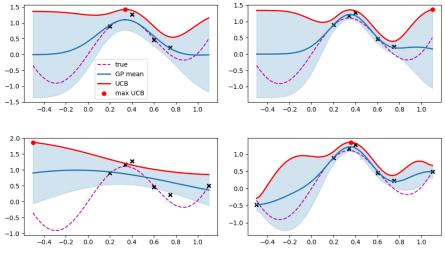
- Maximise overall nerve or physiologial response
- Minimize distance of response to target setpoint
- Need to adjust stimulation parameters to changes
- Exploit previous trials or data

Bayesian optimization

Bayesian optimization

- Optimize unknown function: evaluation at given test points
- Model current function by GP
- Use current GP mean and variance to find new test point:
 - to reduce uncertainty about true function
 - to optimize function
- Iterate until stopping criterion met (eg little change in optimum, enough reduction in uncertainty)

Bayesian optimization

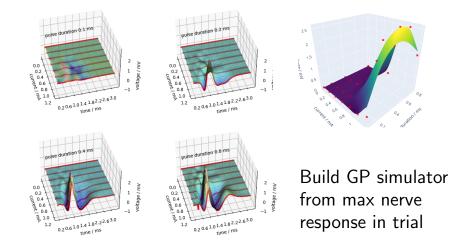


Upper Confidence Bound or Expected Improvement

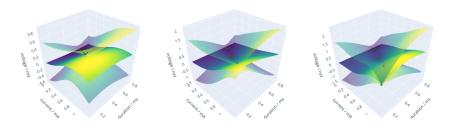
Bayesian optimization of max response

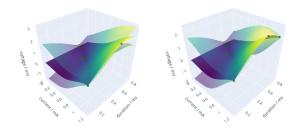
gp for cnap data sub-SA2p1_2_SPARC_10Hz_LcVNS

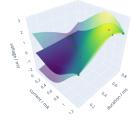
sub-SA2p1_2_SPARC_10Hz_LcVNS



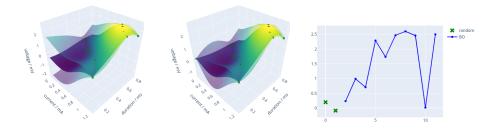
BI0S







BO of max nerve response



Typically acceptable maximum reached in less than a dozen of steps

BI0S

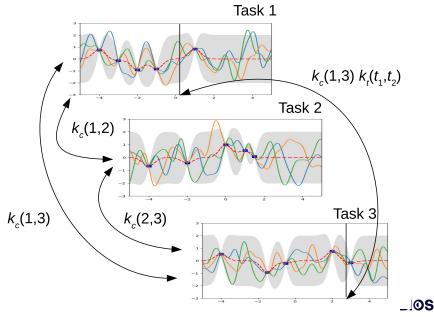
Joint GP for multiple trials?

Update with consecutive data points from the same trial works fine

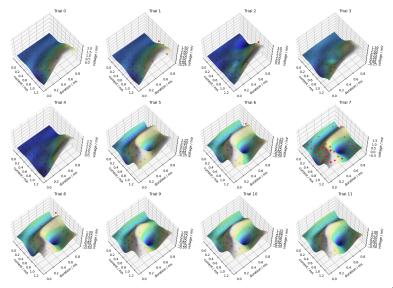
Increased stability and efficiency of BO from multiple trials as priors?

Use multitask GP

Multitask GP

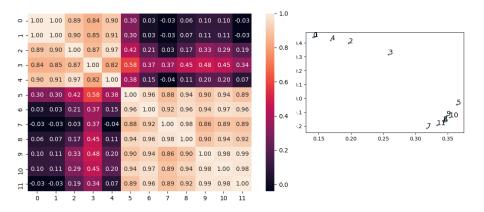


Maximum nerve response trials



BIOS

Coregionalisation kernel of multitask GP



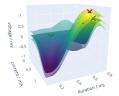
GP estimation of kernel by Cholesky parametrization PC 1 and 2 of Eigendecomposition of kernel

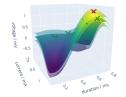
BI0S

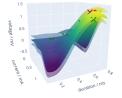
Bayesian optimization with priors

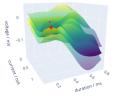
- Select suitable prior trials
- Extend kernel to new trial
- No need even for initial query points, prior trials typically suggest good starting points

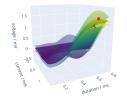
Demo: select 6 previous trials

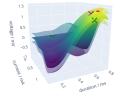




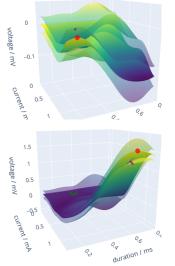


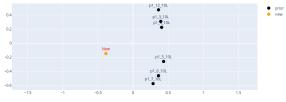






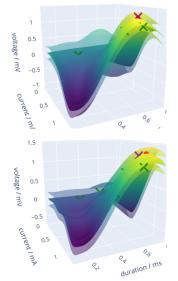
BO with prior

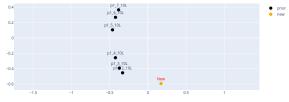




BI0S

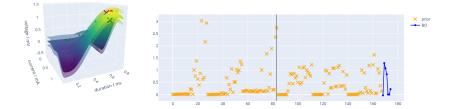
BO with prior







BO of max nerve response

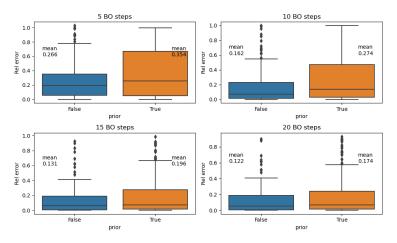


Systematic test of BO with prior

- Obtain true maximum of simulator
- Simulator provides noisy data for BO and BO with prior
- Evalute maximum input suggested by BOs on simulator
- Compare how close to true maximum

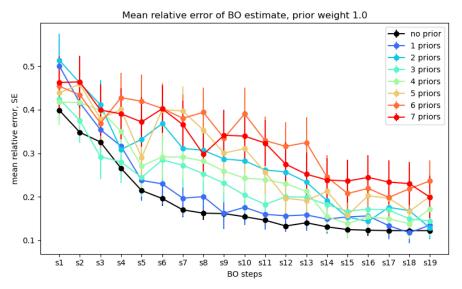
Variables:

- noise-signal ratio NSR
- number of priors
- number of queries



Compared to BO without prior BO with prior performs worse particularly for small numbers of BO queries

BIOS



BI0S

Weighted likelihood

$$f \sim N(0, K_{xx}), (y - f)|f \sim N(0, \sigma^2 I)$$

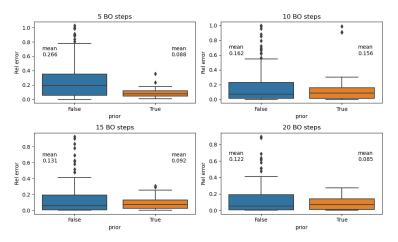
Points weighted by $W = \text{diag}(w_1, \dots, w_n)$ results in likelihood term $(y - f)^T W(y - f)/\sigma^2$

$$ext{cov}(y) = extsf{K}_{xx} + \sigma^2 I ext{ to } ext{cov}(y) = extsf{K}_{xx} + \sigma^2 W^{-1}$$

Equivalently, rescale kernels and data:

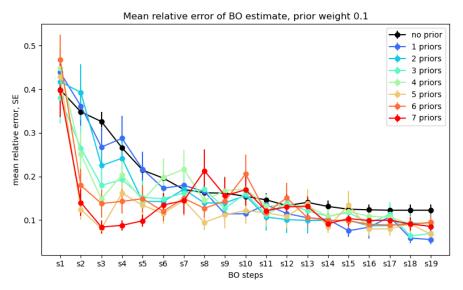
$$f^* = K_{x^*x}(K_{xx} + \sigma^2 W^{-1})^{-1}y = \tilde{K}_{x^*x}(\tilde{K}_{xx} + \sigma^2 I)^{-1}\tilde{y}$$

 $ilde{K}_{x^*x} = K_{x^*x}W^{1/2}, \ ilde{K}_{xx} = W^{1/2}K_{xx}W^{1/2}, \ ilde{y} = W^{1/2}y$

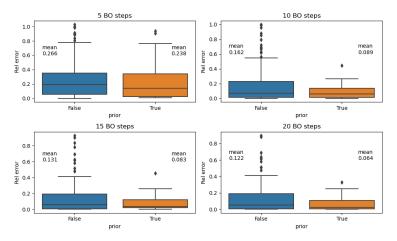


Excellent performance of BO with weighted priors (0.1) and many prior trials (7) for few steps

BIOS

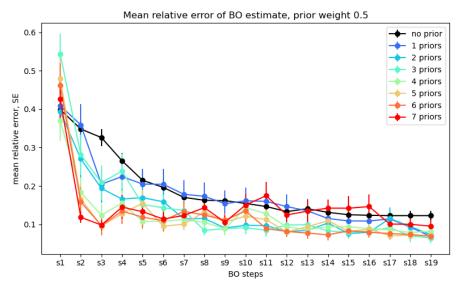


BI0S



Excellent performance of BO with weighted priors (0.5) and fewer prior trials (3) for more steps

BIOS



BIOS

Final thoughts

- Bioelectronic treatments are highly dynamic and time critical compared to traditional therapies
- Full stack solutions required: surgery, electronics, data management, algorithms tightly interlinked
- Bayesian approaches provide stability and robustness through controlled regularisation
- Theoretical considerations of statistical and ML methods directly inspired by practical experience

If you are interested in working in this kind of environment, get in touch:

https://www.bios.health/careers

careers@bios.health