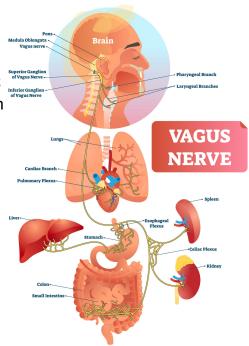

Bayesian optimization of protocols for neurostimulation Lorenz Wernisch BIOS Health Ltd 14 Sep 2021

Bioelectronic therapies

Organs are controlled and regulated by peripheral nervous system

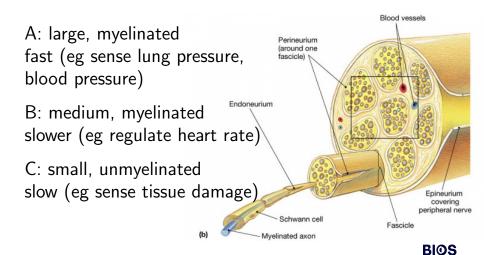
Traditional **biochemical** interventions

Bioelectronic medicines leverage nervous system directly with highly specific, fast and dynamic interventions

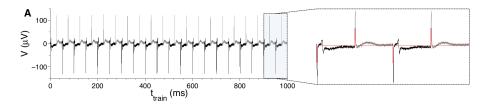

Vagus nerve

Part of **parasympathetic** (calming) nervous system

Two way traffic:


Afferent messages from organs to brain

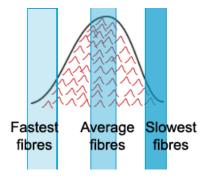
Efferent messages from brain to organs



Cross section of a nerve

Hierarchical organisation into fascicles, types of fibres:

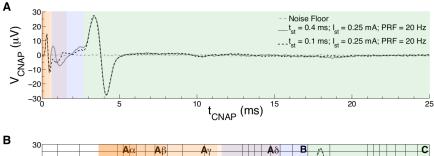
Stimulation by electric pulses

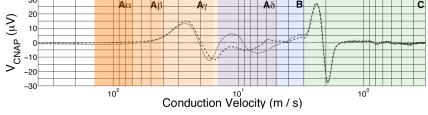


Train of alternating-monophasic stimulation

M Ward et al, A Flexible Platform for Biofeedback-driven Control and Personalization of Electrical Nerve Stimulation, Therapy, 2015

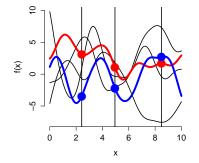
Nerve response to stimulation


Individual nerve cells triggered by **stimulation** electrodes


Action potentials travel at (slightly) different speeds

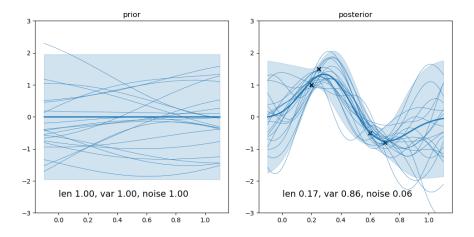
Response recorded by recording electrodes

Artificial responses affect organs similar to natural ones


Velocity chart for fibre types

BI₀S

Gaussian process prior



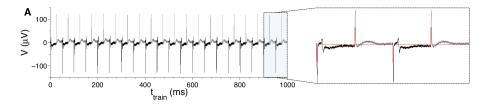
Family of functions via covariance K on input points x $y \sim N(0, K_{xx})$ Prediction for x^* from (x, y) $\mathbf{v}^* \sim \mathcal{N}(K_{\mathbf{x}^*\mathbf{x}}K_{\mathbf{y}\mathbf{y}}^{-1}\mathbf{v}, \Sigma)$ $\Sigma = K_{x^*x^*} - K_{x^*x} K_{yy}^{-1} K_{yy^*}$

Gaussian kernel $cov(x, x^*) = \theta_1 exp(-\theta_2(x - x^*)^2)$

Power from flexibility in kernel design and combinations **BIOS**

GP posterior uncertainty and samples

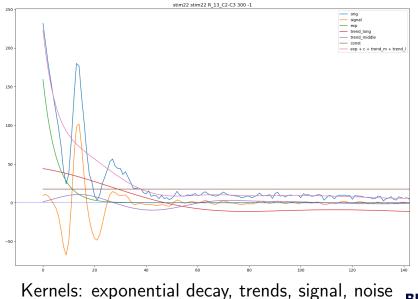
Estimate GP parameters by maximum likelihood


BI₀S

Vagus nerve stimulation in rats

M Ward et al, A Flexible Platform for Biofeedback-driven Control and Personalization of Electrical Nerve Stimulation, Therapy, 2015

- Trials with 12 subjects
- Left cervical branch of vagus nerve
- 7 pulse currents 0, 0.2,..., 1.2
- ▶ 4 pulse durations 0.1, 0.2, 0.4, 0.8, for 20 secs
- Alternating monophasic, 10Hz, for 1 second
- Responses recorded


Stimulation by electric pulses

1s train of alternating-monophasic stimulation, 10Hz

Response decomposition by GP

BI0S

Modelling nerve responses by GPs

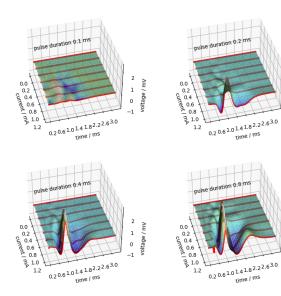
gp for cnap data sub-SA2p1_2_SPARC_10Hz_LcVNS

2

1

-1

2


1

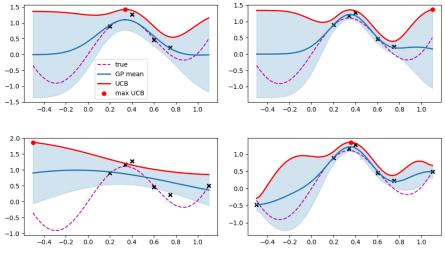
0

Stimulation: pulse duration, current

Response: time series

GP model: Input: curr x dur x time Ouput: voltage

Finding optimal stimulation parameters

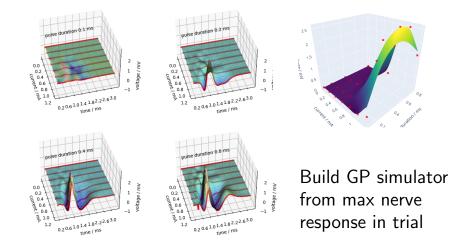

- Maximise overall nerve or physiologial response
- Minimize distance of response to target setpoint
- Need to adjust stimulation parameters to changes
- Exploit previous trials or data

Bayesian optimization

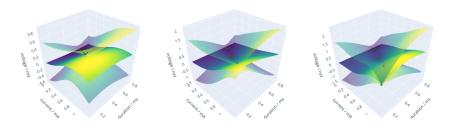
Bayesian optimization

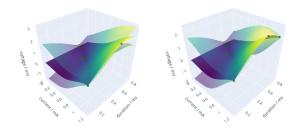
- Optimize unknown function: evaluation at given test points
- Model current function by GP
- Use current GP mean and variance to find new test point:
 - to reduce uncertainty about true function
 - to optimize function
- Iterate until stopping criterion met (eg little change in optimum, enough reduction in uncertainty)

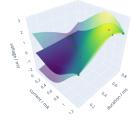
Bayesian optimization

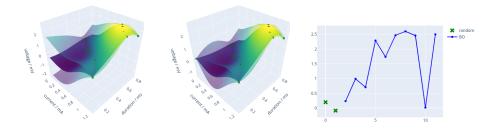


Upper Confidence Bound or Expected Improvement


Bayesian optimization of max response


gp for cnap data sub-SA2p1_2_SPARC_10Hz_LcVNS

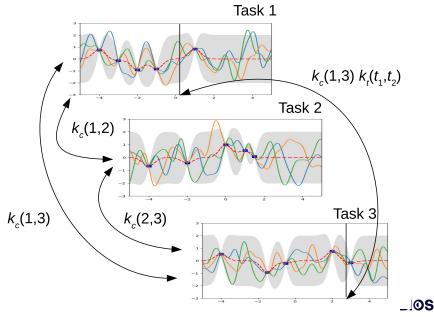

sub-SA2p1_2_SPARC_10Hz_LcVNS


BI0S

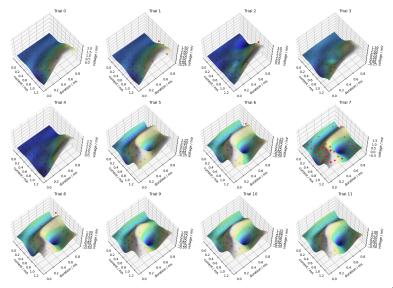
BO of max nerve response

Typically acceptable maximum reached in less than a dozen of steps

BI0S

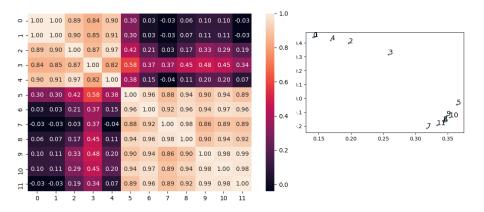

Joint GP for multiple trials?

Update with consecutive data points from the same trial works fine


Increased stability and efficiency of BO from multiple trials as priors?

Use multitask GP

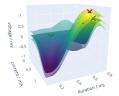
Multitask GP

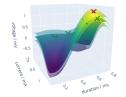


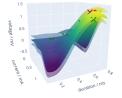
Maximum nerve response trials

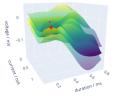
BIOS

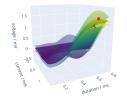
Coregionalisation kernel of multitask GP

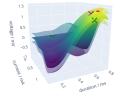

GP estimation of kernel by Cholesky parametrization PC 1 and 2 of Eigendecomposition of kernel

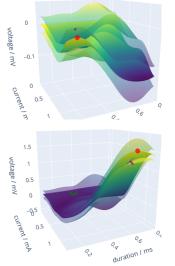

BI0S

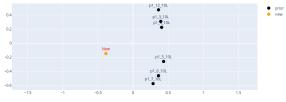

Bayesian optimization with priors


- Select suitable prior trials
- Extend kernel to new trial
- No need even for initial query points, prior trials typically suggest good starting points

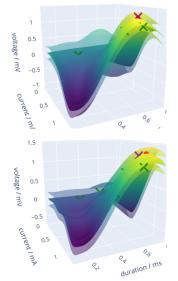

Demo: select 6 previous trials

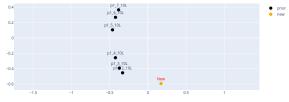






BO with prior

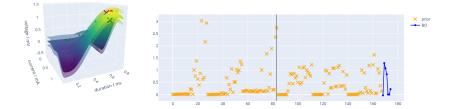




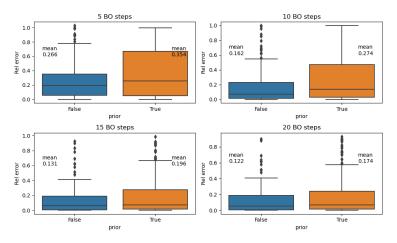


BI0S

BO with prior

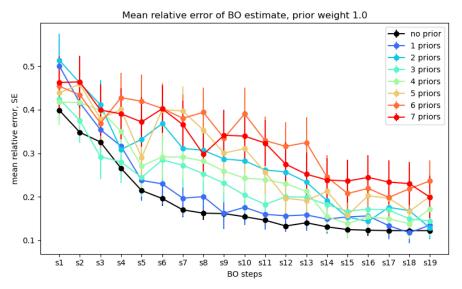


BO of max nerve response



Systematic test of BO with prior

- Obtain true maximum of simulator
- Simulator provides noisy data for BO and BO with prior
- Evalute maximum input suggested by BOs on simulator
- Compare how close to true maximum


Variables:

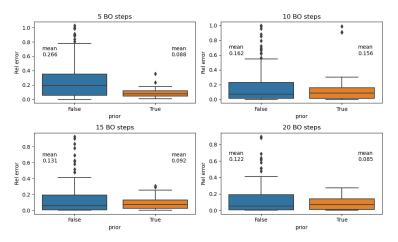
- noise-signal ratio NSR
- number of priors
- number of queries

Compared to BO without prior BO with prior performs worse particularly for small numbers of BO queries

BIOS

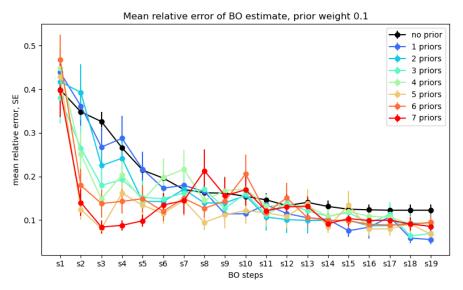
BI0S

Weighted likelihood


$$f \sim N(0, K_{xx}), (y - f)|f \sim N(0, \sigma^2 I)$$

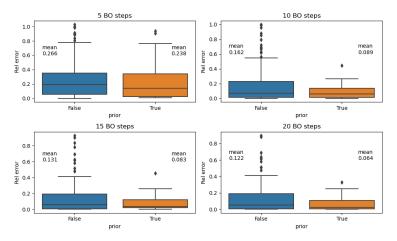
Points weighted by $W = \text{diag}(w_1, \dots, w_n)$ results in likelihood term $(y - f)^T W(y - f)/\sigma^2$

$$ext{cov}(y) = extsf{K}_{xx} + \sigma^2 I ext{ to } ext{cov}(y) = extsf{K}_{xx} + \sigma^2 W^{-1}$$


Equivalently, rescale kernels and data:

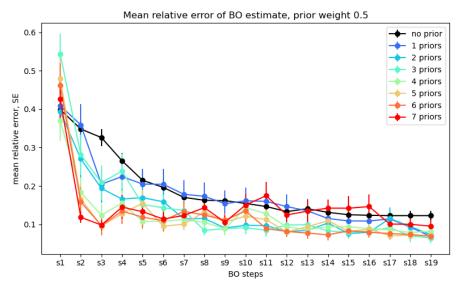
$$f^* = K_{x^*x}(K_{xx} + \sigma^2 W^{-1})^{-1}y = \tilde{K}_{x^*x}(\tilde{K}_{xx} + \sigma^2 I)^{-1}\tilde{y}$$

 $ilde{K}_{x^*x} = K_{x^*x}W^{1/2}, \ ilde{K}_{xx} = W^{1/2}K_{xx}W^{1/2}, \ ilde{y} = W^{1/2}y$



Excellent performance of BO with weighted priors (0.1) and many prior trials (7) for few steps

BIOS



BI0S

Excellent performance of BO with weighted priors (0.5) and fewer prior trials (3) for more steps

BIOS

BIOS

Final thoughts

- Bioelectronic treatments are highly dynamic and time critical compared to traditional therapies
- Full stack solutions required: surgery, electronics, data management, algorithms tightly interlinked
- Bayesian approaches provide stability and robustness through controlled regularisation
- Theoretical considerations of statistical and ML methods directly inspired by practical experience

If you are interested in working in this kind of environment, get in touch:

https://www.bios.health/careers

careers@bios.health