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Abstract

Objective. In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain
or organs, modifying their function. Stimulation devices capable of triggering exogenous neural
signals using electrical waveforms require a complex and multi-dimensional parameter space to
control such waveforms. Determining the best combination of parameters (waveform optimization
or dosing) for treating a particular patient’s illness is therefore challenging. Comprehensive
parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to
the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic
results, reduced responder rates, and adverse effects. Approach. As an alternative to a full parameter
search, we present a flexible machine learning, data acquisition, and processing framework for
optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian
optimization. This optimization builds a model of the neural and physiological responses to
stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy
of the response model. The vagus nerve (VN) innervates, among other thoracic and visceral
organs, the heart, thus controlling heart rate (HR), making it an ideal candidate for demonstrating
the effectiveness of our approach. Main results. The efficacy of our optimization approach was first
evaluated on simulated neural responses, then applied to VN stimulation intraoperatively in
porcine subjects. Optimization converged quickly on parameters achieving target HRs and
optimizing neural B-fiber activations despite high intersubject variability. Significance. An
optimized stimulation waveform was achieved in real time with far fewer stimulations than
required by alternative optimization strategies, thus minimizing exposure to side effects.
Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that
a complex set of neural stimulation parameters can be optimized in real-time for a patient to
achieve a personalized precision dosing.

1. Introduction activity, stimulation devices are able to trigger exo-
genous neural signals. For the stimulation of nerves,

Bioelectronic medicine applies neuromodulation to  exogenous neural signals take the form of evoked

modify neural activity and physiological function,
providing a novel approach to treating a range of
neurological and physiological diseases. In contrast
to exploiting endogenous (or spontaneous) neural
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compound action potentials (eCAPs), the result of
a depolarization of a large number of fibers in the
nerve triggered by an electrical stimulus (examples of
eCAPs are shown in figure 4). The type and number
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of fibers recruited depend on the wave form and dos-
ing of the stimulus in a complex way. Through such
signals, therapies utilizing stimulations can alter the
function of organs, offering promising new avenues
for medical treatment (Cracchiolo et al 2021). The
exogenous signal is typically delivered by an implant-
able pulse generator via electrodes placed with nerve
tissue.

The autonomic nervous system (ANS) is essen-
tial for maintaining homeostasis throughout the body
and is implicated in the pathogenesis of a variety of
disorders. The vagus nerve (VN) is a key target for
neuromodulation of the ANS, as it innervates sev-
eral thoracic and visceral organs, including the heart,
lungs and gut. Accessing the VN through surgery is
relatively straightforward (Reid 1990) and VN stim-
ulation (VNS) has been suggested for the manage-
ment of neurological diseases such as drug resist-
ant epilepsy (Labiner and Ahern 2007a), depression
(Nemeroff et al 2006), as well as respiratory (Carr
and Undem 2003, Chang ef al 2015), inflammatory
(Pavlov and Tracey 2012) and cognitive conditions
(Meyers et al 2018, Martin et al 2022), among others.

In this study, we explore the optimization
of neural stimulation parameters to achieve tar-
geted physiological changes or neural activations.
Specifically, we focus on optimizing VNS paramet-
ers to elicit a precise change in heart rate (HR) or a
defined level of B-fiber activation. A specific change
in HR immediately after VNS is the basis of most
VNS therapies for heart failure suggested to date:
cyclic application of stimuli that achieve mild brady-
cardia have shown long term therapeutic effects in
preclinical studies (Dusi and De Ferrari 2021). In
particular, based on earlier studies (Ardell et al 2017a,
Nearing et al 2020), stimulations that achieve a bal-
ance between tachy- and bradycardia for an overall
net effect of zero change in HR are the focus of a
recent clinical trial (Konstam et al 2019).

While the potential of VNS is widely recognized,
important challenges remain in developing effective
stimulation protocols. Notably, there is substantial
patient-to-patient variation in the distribution and
arrangement of fibers in the VN (Upadhye et al 2022,
Jayaprakash et al 2023), as well as in the coupling of
these fiber groups and stimulation electrodes (Qiao
et al 2016). This necessitates a personalized optim-
ization process. The optimization of VNS for HF
therapies is primarily based on mitigating potential
off-target effects prior to considering the efficacy of
the resulting VNS setting (Labiner and Ahern 2007a,
Nicolai et al 2020). Besides patient to patient vari-
ation in the effect of VNS parameters, changes in the
same patient over time have been observed as well (for
example, over a ten week titration period in Nearing
etal (2020)). Extensive adjustments over a large num-
ber of stimulation parameters are time consuming
and often induce discomfort or even more severe
side effects. The development of rapid and flexible
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optimization procedures which can quickly and effi-
ciently identify stimulation parameters with a specific
response is therefore of great interest.

Personalizing neural stimulation presents a multi-
faceted challenge, necessitating specialized hardware
and software solutions. The system utilized in this
study encompasses a neural interface that captures
high-quality, longitudinal neural and physiological
data, as well as a cloud infrastructure tailored for real-
time collection and processing of these signals. The
focus of this work, however, is a method for optim-
izing stimulation parameters, in particular, Bayesian
optimization (BO). We refer to the specific version
of BO tailored for neural stimulation in this study as
online BO of evoked signals (OBOES).

Parameter optimization in neuromodulation has
been successfully applied across various domains.
One notable instance is adaptive deep brain stimula-
tion, which exemplifies the closed-loop dynamic con-
trol of brain activity via continuous adjustment of
stimulation parameters (Arlotti et al 2018, Guidetti
et al 2021). In contrast, our focus is on optimizing
stimulations for a system that is, at least temporar-
ily, non-dynamic. BO is a computational technique
that seeks to identify optimal parameters with a min-
imum number of exploratory steps. BO algorithms
have recently emerged as promising optimization
tools for stimulations of the nervous system in sev-
eral studies: for optimizing epidural spinal cord stim-
ulation in rats (Desautels et al 2015), for intracor-
tical stimulation in monkeys (Laferriere et al 2020),
for distal limb movement in monkeys (Losanno
et al 2021, Bonizzato et al 2023), treatment of epi-
lepsy (Park et al 2020, Stieve et al 2023), and improved
memory (Ashmaig et al 2018) in deep brain stim-
ulation. Simulation studies, utilizing models based
on neuromodulation data, demonstrate the potential
of BO in comparison to other optimization meth-
ods (Grado et al 2018, Mao et al 2023, Aiello et al
2023).

The core principles of a BO approach involve
identifying and optimizing an individual’s response
to stimulation inputs at a specific point in time,
without relying on past responses from the same indi-
vidual or from others. Given the absence of prior
knowledge about the VNS response function under
these conditions, exploration becomes essential. At
the same time, steps need to be taken toward optim-
izing the response. Thus, a balance must be struck
between exploration and optimization. Finally, a stat-
istical assessment of the extent of exploration and of
the confidence range on the discovered optimum is
desirable. Knowledge of the probability that responses
will likely fall outside a safety or comfort range helps
managing the range of acceptable dosing.

We develop and tested OBOES by optimizing
responses to stimulations controlling HR and eli-
citing optimized activations of certain nerve fiber
types. To develop, compare and evaluate optimization
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approaches offline (or in silico) before their real-time
experimental deployment, we developed realistic sim-
ulation models of typical neural responses to VNS
using experimental data. These simulation models
are data-driven with minimal modeling assumptions
about any underlying mechanisms, thus providing a
realistic evaluation platform for assessing the effect-
iveness of optimization approaches for various VNS
scenarios. It should be noted that the simulation
models developed in this study were not designed
to precisely replicate responses to neural stimula-
tion. Instead, their purpose was to offer a reason-
ably realistic representation of these responses to
facilitate the development and thorough evaluation
of OBOES, ensuring it was robust and effective prior
to its application in actual experimental settings.
The effectiveness of a neural stimulation optimisa-
tion using a Bayesian method approach in an online
(or in vivo) setting was explored in a series of VNS
experiments conducted on anesthetized swine. Since
OBOES is able to optimize arbitrary response func-
tions, the method is applicable to human patients as
well, particularly given the functional similarities of
the human and porcine VN (Settell et al 2020).

In addition to the optimization of changes in
HR, we performed optimization of neural biomark-
ers, such as the activation of specific fiber types.
To this end, we recorded exogenous nerve signals
induced by VNS, in the form of eCAPs. It has been
widely hypothesized that B-fiber activation is associ-
ated with bradycardia (Qing ef al 2018a). Fiber activ-
ation in the exogenous signal can be optimized with
minimal physiological effects using stimulations with
low frequency and short duration. Optimizing fiber
activation instead of directly targeting a change in
HR is therefore less stressful for the subject and less
time consuming. As an example of the applicability
of OBOES to optimize specific neural signals in an
online experiment, we maximized B-fiber activation
while minimizing stimulation current.

In summary, we have demonstrated the practical
applicability of a machine learning (ML) optimiza-
tion algorithm for VNS in a series of preclinical trials.
This system achieves, in real time, target changes in
HR or maximization of B-fiber activation while min-
imizing stimulation current. Consequently, the sys-
tem facilitates the optimization of multi-dimensional
VNS parameters, thus enabling a personalized preci-
sion dosing with a minimum number of stimulations
causing side effects.

2. Methods

We describe the surgical setup and technical infra-
structure for recording neurograms of eCAPs in the
VN and HR changes with VNS. To assess the per-
formance of our optimization approach on neural
data we built a series of simulators. Since the ‘true’
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response function is known for simulators, optimiz-
ation algorithms can be compared and assessed and
the efficiency of an optimization can be evaluated off-
line. Simulators for eCAPs were constructed based on
VNS responses recorded from our subjects, termed
the porcine dataset. A further set of simulators is based
on data available in the literature, termed the rodent
dataset. Finally, we performed online optimizations of
HRs and neural fiber activations intra-surgically and
describe a statistical method for assessing the uncer-
tainty estimates of OBOES when the true response
function is unknown.

2.1. Anesthesia and surgical preparation
Experiments were conducted on five female Landrace
pigs (labeled A7 to All) under the approval of the
local Institute of Animal Care and Use Committee,
and approved in accordance with the animal use
policy of BIOS Health Ltd. All animals, weighing
43.2 +3.5kg, were sedated using an intramuscu-
lar injection of ketamine (25mgkg™!), atropine
(0.04mgkg™!) and acepromazine (1.1 mgkg™!),
then intubated and anesthetized using propofol
(3ml slow intravenous bolus for induction and
0.4 mgkg~! min~! for maintenance). The depth of
anesthesia was monitored and adjusted based on the
occipital reflex, jaw tone and hemodynamic indices. A
mechanical respirator was available, although anim-
als were left to breathe spontaneously unless end tidal
carbon dioxide concentration exceeded 70 mmHg.
A two-lead electrocardiography (ECG) was used
in a lead I configuration. Data were digitized at a
rate of 500 Hz using the Axon Digidata 1550B plus
HumsSilencer (Molecular Devices, CA, USA).

Animals were positioned supine, with both fore-
limbs and head extended to expose the ventral aspect
of the neck. A 10 cm incision was marked 2 cm right
of the midline. The nodose ganglion marks the most
cranial point of our interaction with the vagus. Eight
centimeters of the nerve was stripped and cleaned
caudally of the nodose to fit three cuffs.

The surgical procedures each ran for 8 h at which
point the animals were euthanized with an intraven-
ous administration of T-61 (0.3 mlkg ™).

2.2. Electrodes and equipment
The multi-contact cuffs, built by Microprobes (NC,
USA), each contained eight electrodes arranged in
longitudinal bipolar pairs (see figure 1). All neural
recordings and stimulation data presented in this
paper were performed via the maximally spaced
bipolar pair (electrodes 1 and 8 in figure 1), with
a center-to-center separation of 8.3 mm. The cuff
arrangement gave an average inter-cuff distance of
24.5 £ 15.8 mm between the stimulation cuff and the
most cranial recording cuff across the cohort.

All cuffs were connected to a custom data
acquisition system engineered in-house. Briefly,
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Figure 1. Illustration and histology of the cross section of the vagus nerve showing cuff placement and electrode layout. The
multi-fascicle nature of the vagus nerve poses a challenge for the targeted activation of a specific fiber or fascicle within the bundle
over other fibers, given the size and location of electrode contacts relative to the fiber positioning.
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Figure 2. Overview of OBOES framework. Device parameters (a query) for the next stimulation event are suggested by BO. If the
operator deems the stimulation parameters to be safe considering the current state of the subject, they apply the neural stimulus.
Neuronal as well as physiological responses are recorded. The optimizer integrates the new response in an improved surrogate
function: a model representation of the true response function. The BO algorithm then provides a new query that will result in a
response that either contributes to an improved accuracy of the surrogate model function or is closer to the target value. Here
OBOES is illustrated for a target value of a specific (red dots) change in heart rate (AHR) over pulse frequency (f) and current (I).

an RHD2216 differential amplifier and RHS2116
stimulator/amplifier digital electrophysiology chips
(Intan Technologies) are controlled through cus-
tom HDL on an Artix 7 (Xlinix, CA, USA) field-
programmable gate array (FPGA) sampling up to
16 channels at 30kHz. The system is capable of
applying stimulation pulses with varying current
(10-2500 pA), frequency (1-1500Hz), individual

pulse width (1-1000 us), and train duration (1-10's).
Biphasic symmetric constant-current pulses were
delivered through a single channel in reference to
a ground lead positioned proximal to the stimulation
site. A spare pair of record channels were used as an
additional ECG recording to ease synchronization of
the neural and physiological data and to obtain HR
data during online optimization.
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Figure 3. High-level overview of the ITx Platform. Neural and physiological data are collected using proprietary components
deployed in the operating theater and uploaded to the cloud environment, where it is accessed via various portals. NeuroTool:
system for delivering stimulation protocols, monitoring vitals, neural recordings and in the operating theater, Web Portals: OBOES
Explorer for running and monitoring the optimization, Data Explorer for analyzing and displaying raw and processed data.

2.3. Research and development system architecture
We developed a software suite to accelerate our
research and development (R&D) process with the
goal of coupling data generation with cloud-based
data management and processing resources to sup-
port ML research in neuroscience. A schematic of the
platform is shown in figure 3.

The data acquisition components of the system
reside in the operating theater: the data acquisi-
tion system (neural interface) and user interface (UI,
NeuroTool). The data acquisition system performs
the VNS and VN signal recording, uploads data to
the cloud services and has an onboard GPU for
edge ML inference. Stimulation control models are
deployed here for applications where rapid inference
and data security are paramount. Data can be tem-
porarily streamed to the UI for validation and check-
ing of impedances. All stimulation parameters can
be programmed, adjusted and triggered by an onsite
electrophysiologist.

Data are uploaded to a data ingestion service in
batches. From here, the neural responses of interest
can be immediately visualized and examined on Data
Explorer or on OBOES Explorer (see figure 3; snap-
shots of the explorer screens are shown in the supple-
mentary material). Monitoring of responses informs
fiber activation thresholds to guide other stages in
the protocol. Data are stored on a remote server and
can be downloaded for post surgical analysis and
algorithm development.

2.4. Rodent dataset

For the development of the OBOES framework, we
devised a simulation platform for testing, refining and
evaluating optimization approaches on simulated
data. Such simulations should show characteristics

as close as possible to realistic neural or physiolo-
gical responses to stimulations. We utilized data on
neurograms of eCAPs by Ward et al (2015), avail-
able through the National Institutes of Health SPARC
programme (Ward et al 2021). The dataset provides
the responses to a grid of VNS parameter values
varying over seven pulse currents and four pulse
widths. Each stimulation was applied cathode-first
with an alternating monophasic constant current.
Twelve rodents received the complete sweep of 28
VNS parameter combinations at a fixed pulse fre-
quency of 10Hz. Here we refer to the rodents as
subjects P1 to P12. The maximum eCAP values
provided in the study form the basis of our simulator
construction.

2.5. Porcine dataset

We extended the simulation platform using data from
our own experiments. Exogenous signals in the form
of eCAP responses to stimulation were collected for
four porcine subjects A7 to A11. The pulse width was
set to either 130 us, 260 us, or 500 us and the pulse
train duration to 5s. A range of frequencies (2, 5, 10,
15, 20 Hz) and currents (50-2500 iA, in increments
of 100 A) were applied. We found an alternating,
monophasic, constant pulse waveform to be the most
suitable to elicit clean eCAP responses without amp-
lifier artifacts.

Evoked neural and cardiovascular responses to
VNS were recorded and vitals were allowed to return
to baseline before starting the next cycle (with a
minimum of 30s between each cycle). Charge lim-
its were set at the point where stimuli caused notice-
able strong side effects, such as coughs or extended
bradypnea. Neurograms were processed as described
next.
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Figure 4. Neural response following stimulation in subjects A8 and A10, porcine dataset. The time shown is that from the
beginning of the first stimulation pulse (St, the stimulation pulse is not shown). (a) subject A8 at 260 us. (b), (c) subject A10 at
260 ps and 500 pis. A3- and Ay-fiber activations emerge at lower stimulation currents than B-fiber activation. Signal artifacts
from muscle activation are present in all recordings. The apparent decline in AZ and A~y activation in (c) at high currents is most
likely due to interference with a third A-fiber activation between them.

2.6. Processing of neural data
Stimulations are administered as a train of
consecutive pulses at a specific frequency. We
observed no difference in the shape of eCAPs eli-
cited by individual pulses, provided the pulses main-
tained identical width and current amplitude. So
we only considered the eCAP response to the initial
pulse for subsequent analysis. The neural recordings
sometimes exhibited stimulus artifacts post-pulse,
attributable to some coupling between stimulating
and recording electrode and amplifier saturation. We
rectified this by fitting robust polynomial regressions
of low degree to the time series (Seabold and Perktold
2010) and subtracting the regression values. This is
followed by convolution smoothing using a Kaiser
window of increasing size, in order to retain fine
details at the beginning of the signal for faster, less
dispersed eCAPs, while providing enough smoothing
toward the end of the signal for slower, more dis-
persed eCAPs. As an example, the evolution of the
fiber engagement for two subjects, recorded from the
most cranial cuff, are displayed in figure 4. Additional
figures of eCAPs for all subjects can be found in the
supplementary material.

Activations of three fiber types are visible in the
neurograms of figure 4, denoted Aj3-, Avy-, B-fibers
followed by a laryngeal muscle artifact. The muscle
artifact was validated through caudal vagotomy as
in Nicolai et al (2020). We noticed that the artifact
appears instantaneously on both cuffs without any
conduction delay in contrast to the other eCAPs. fiber
activation thresholds differ from subject to subject.

This is likely due to differences in bioelectronic coup-
ling at the cuff-nerve interface and anatomical vari-
ation in fiber distribution (Losanno et al 2021).

For optimizing B-fiber activation, activation was
calculated from neurograms by identifying the B-
fiber maximum and minimum peak and taking their
difference.

2.7. Gaussian processes
Gaussian processes (GPs) (Rasmussen 2006) provide
a flexible, nonlinear approximation of an unknown
response function. The only way to gather informa-
tion about this response function is to probe it with
specific input values and to obtain corresponding
response values. This is often referred to as a black
box function, which is only accessible via such input
queries. With only a finite number of inputs and
corresponding response values, limited information
about the underlying function is available, and the
approximation might not be very accurate. If sub-
sequently more data become available, it is possible
to integrate them in a principled probabilistic fash-
ion to improve the GP approximation. Here we use
GP approximations for two purposes: (a) construct-
ing simulation models for method development and
testing, described in section 2.8, and (b) serving as a
surrogate function in BO, as outlined in section 2.9.
Technical details of how a GP approximation is
set up can be found in the supplementary materi-
als. Essentially, a GP provides an approximation to a
response function g that maps a d-dimensional input
x € R¥to to a scalar response y, y = g(x). A key feature
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of a GP is the ability to provide an estimate of the
precision of its approximation in the form of uncer-
tainty regions above and below its approximation.
The accuracy of the approximation improves with an
increasing number of data points of input-response
pairs. The GP is represented by a mean function m(x)
for any input x and an uncertainty estimate v(x) at this
point. The smaller v(x) the more accurate the approx-
imation. In this study GP approximations are shown
as surfaces (of mean response) with upper and lower
confidence bounds indicated as transparent surfaces
when the uncertainty around the GP mean response
is of interest. They consist of the surfaces for m(x) +
v/v(x) enclosing the central 68.2% quantile of a nor-
mal distribution. For examples showing of all three
surfaces see figure 8.

Fitting a GP to data (x, y) means choosing suitable
kernel parameters that represent the variance of the
signal, the multi dimensional length scales (smooth-
ness), and the noise variance. Parameters can either
be set manually or estimated by maximum a posteriori
probability with or without a prior such as a gamma
distribution (some details on priors used in this study
can be found in the supplementary material).

2.8. Exemplary simulators for the rodent and
porcine dataset

In order to develop and assess optimization
approaches offline, we developed simulators based
on the rodent as well as on our porcine dataset. Our
primary intent with simulations was to ensure the
readiness of our real-time optimization algorithm
before deploying it in experiments on live animals.
We viewed simulations as a critical debugging and
validation step where: (i) the complete algorithm and
pipeline could be tested end-to-end. (ii) runtimes
could be assessed to ensure they were not excessively
long. (iii) GP priors, such as noise and length scales,
and optimization parameters like the balance factor
between exploration and optimization or the num-
ber and location of starting points (as discussed in
a following section), were tuned appropriately. (iv)
Simulations gave us a ballpark estimate of the number
of BO steps needed before our results could outper-
form other search methods, which was instrumental
in adjusting our experimental schedule during sur-
gery sessions. (v) We were able to introduce variability
in form of controlled levels of randomness and noise
into the simulated data.

While we initiated our simulations with standard
functions commonly used in the BO literature, we
soon discerned that the real-world response functions
could exhibit specific features not present in these
standard functions. This led us to derive functional
relationships directly from actual data, which has two
main facets: (i) the base response should authentically
mirror the characteristics—like shape, range, num-
ber of local minima and maxima—typically found
in real response functions based on physiological or
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eCAP features; (ii) in practical experiments, the meas-
ured response invariably contains random fluctu-
ations and measurement noise. GP approximations
are aptly suited to address both these points.

Based on actual experimental input-response
data, we employ GP regression to fit a (mean)
response surface to the data. GP regression is well
suited to deal with irregular, high-dimensional input
points and noisy responses. Once a response surface
is fitted, for the purpose of a simulation, we are free
to designate the fitted surface as the ‘true’ response,
serving as a benchmark for evaluating optimization
algorithms. Notice, however, that such simulated data
are typically too smooth, since disturbances or meas-
urement noise are not included. In real-world scen-
arios we typically are unable to obtain clean values of
the true responses without distortion by random exo-
genous factors and measurement noise. To reproduce
such characteristics of actual data, our simulator adds
Gaussian random noise to the smooth response at a
noise-to-signal ratio of 0.2 for each output request.
This reflects a noise intensity equivalent to about 20%
of the signal—a parameter observed across the major-
ity of our data sets.

For the rodent dataset we constructed GP simu-
lators for maximal eCAP activation for each of the 12
subjects P1 to P12. A GP approximation of maximal
eCAP action in subject P10, for example, is shown in
figure 6(c). The original data provide 28 data points
(shown in blue in figure 6(c). A GP approximation
provides an output for any arbitrary input within a
given search space.

For the porcine dataset of subjects A7 to Al0
we constructed GP simulators that include the time
dimension as well to represent the neural signal as
time series, that is, a three dimensional input point
of current, width, and time is mapped to the corres-
ponding electrode voltage value at that time (for an
example see figure 5). For further details of GP para-
meter settings see the supplementary material. For an
input of stimulation parameters this type of simulator
returns a time-series vector, a neurogram of eCAPs.
In order to obtain a scalar response representing B-
fiber activation, the activation value was computed as
difference of the maximum in the first half to the min-
imum in the second half of the B-fiber range defined
as 2.47—-4.3 ms, 2.3-4.97 ms, 2.97-5.97 ms, and 3.97—
6.3 ms for A7 to A10.

2.9.BO

BO (Archetti and Candelieri 2019) is a popular choice
for the optimization of objectives over unknown
functions. BO is a sequential search strategy optimiz-
ing the input to an unknown response function balan-
cing optimization with exploration (Mockus (2012),
for an accessible introduction see also BorealisAl
(2020)). Typically the response function to be optim-
ized over is unknown. However, it can be probed
at any arbitrary input point (possibly with certain
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boundaries). In the context of a BO the mechanism
producing responses to inputs is referred to as the
oracle or black box function. In what follows, we will
use BO in two contexts: when the oracle is provided
offline by a simulator (a GP fitted on a full data set),
and when the oracle is provided online by a real-time
measurement of the physiological or neural response
following VNS in an alive subject. For details, see
sections 2.11 and 2.12, respectively.

Since the optimizer has no access to the true
response function and can only query it at a few input
points through the oracles, it builds a surrogate func-
tion which it maintains and improves internally to
guide its search. Sequential querying of the oracle is
used to improve the surrogate function. The surrog-
ate function therefore needs to be flexible enough to
adapt to new data. It should also provide some estim-
ation of uncertainty in order to balance optimization
with exploration. This is required in order to detect
regions of high uncertainty that might require more
data to narrow the uncertainty gap.

2.10. BO with GPs

GPs are a popular choice for representing surrogate
functions in BOs. As discussed in section 2.7, GPs
are probabilistic models that are able to capture func-
tional relationships between multidimensional inputs
and a nonlinear responses. Starting from a typically
flat representation of the function before any data
are available, a GP provides an increasingly accur-
ate estimation of the unknown response function by
incorporating an growing number of data points.

A BO run consists of a series of requests in the
form of queries to the oracle. To find the next query
input to forward to the oracle, a BO maintains an
acquisition function in addition to its surrogate func-
tion. The next query input is an input that optim-
izes the acquisition function. The acquisition func-
tion needs to support finding an optimum of the
(unknown) objective function based on the BO’s sur-
rogate function. In addition, it also needs to support
exploration of new regions for an improved estima-
tion of the surrogate function. To achieve these com-
plementary aims an acquisition function is typically
some combination of the mean of the surrogate func-
tion with its uncertainty. Once the acquisition func-
tion is optimized and the corresponding input is for-
warded as query to the oracle, the oracle returns
the response to that input. The acquisition function
is designed so that this response either provides an
improved optimum, or reduces the uncertainty about
the response function in an under-explored region.
The new data point contributes to an improved
estimation of the objective function by the surrogate
function.

The upper (lower) confidence bound UCB (LCB)
is a popular acquisition function if the goal is to
maximize (minimize) the objective. As in section 2.7
a GP is given in form of its mean function m(x)
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and the uncertainty variance v(x) or standard devi-
ation s(x) = /v(x) at input x. LCB and UCB are
then defined as lcb(x) = m(x) — As(x) and ucb(x) =
m(x) + As(x) (A ascaling factor that trades off explor-
ation with exploitation; we call it the confidence bound
factor).

Since we often not necessarily aim to maximize
or minimize a response, but to get close to a spe-
cific set point, we propose a novel acquisition func-
tion. The targeted confidence bound method or TCB,
is a variation of the UCB and LCB acquisition func-
tion and defined as tcb(x) = |m(x) — #| — As(x). An
optimal query point is found as x* = argmin, tcb(x).
A justification for the use of this acquisition function
to find an optimal point achieving a target set point is
provided in the supplementary material.

2.11. Offline BO: assessment using simulations
Before deploying OBOES in a live experiment, we
assessed the feasibility, practicability, and the conver-
gence rate to be expected for typical neural response
functions. We used the simulators from section 2.8 to
provide challenging objective functions from realistic
neural data sets. With a simulator, we have access to
the true objective function and can therefore provide
the ‘ground truth’ optimum. This optimum can be
used as a yardstick to assess how quickly an optimiza-
tion algorithm converges to it in terms of numbers of
required queries.

We expect the number of queries required by
an efficient optimization algorithm for reaching an
optimum to be small. Using a simulator, an eval-
uation of BO in terms of the required number of
iterations was done as follows. First we obtained the
true optimal value from the simulator. Then, starting
with two initial queries at the extrema of lowest and
highest values (for all input dimensions) within the
search space, we tracked the progress of BO iterations
from query to query. At each iteration we obtained
the BO’s suggestion for the next query point (which
optimizes its acquisition function) as input to the
oracle in the next iteration. For the purpose of assess-
ment, however, we also obtained the BO’s best cur-
rent guess of an input that might elicit an optimal
response from the oracle (which optimizes its surrog-
ate function). Since the best current guess is obtained
by optimizing the surrogate function, the estimated
optimal input typically differs from the query input,
which is obtained by optimizing the acquisition func-
tion. For the assessment, the algorithm’s estimated
optimal input is evaluated by the simulator. The
value returned for that input is compared to the true
optimum (which was obtained from the simulator in
the beginning). The relative error is the absolute dif-
ference between guessed and true optimum divided
by the true optimum.

The most straightforward alternative to a BO
search is a grid search with a fixed number of input
points laid out in a grid. Notice that optimization
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using a grid requires a large amount of oracle eval-
uations before an optimum can be called, since all
grid points need to be evaluated. The relative error
of this optimum serves as a threshold any competit-
ive optimization method should be able to undercut
in fewer iterations than the size of the grid. A ran-
dom search evaluates random input points sequen-
tially through the oracle and keeps track of the best
result along the sequence. For examples of a com-
parison of all three search strategies see figure 7. We
expect that the relative error of a BO is smaller than
that of a random search for the same number of
iterations.

2.12. Online BO: modulating HR change and
B-fiber activation

Two types of online experiments were conducted
using OBOES. The first experiment aims to optim-
ize VNS to meet a target modulated HR change. The
second aims to optimize a specific vagal fiber recruit-
ment, as measured by recorded eCAPs.

Online experiments for HR were conducted in
subjects A9, A10, A11 and for B-fiber optimization in
subject A12. A safe search space for pulse frequency
and current was established based on previous stim-
ulation experiments and the judgment of an onsite
electrophysiologist. We initialized the BO algorithm
with two fixed stimulation settings: one at lowest fre-
quency and current setting, one at the highest within
the search space. The optimization cycle proceeds as
shown in figure 2. To achieve a target HR, a target
value for AHR was chosen: —5 bpm for A9 and Al1,
and —10 bpm for A10. After initialization, the BO
model suggests a query input, consisting of a cur-
rent (I/uA~') and a frequency (f/Hz™'). A stimu-
lation with these query settings is applied. The car-
diovascular and vagus response for this stimulation
are uploaded via the Data Ingestion Service serving
OBOES Explorer (figure 3). The HRs on either side
of the stimuli are estimated from ECG data (for
details see supplementary material) and their differ-
ence AHR returned to the BO algorithm as response
to the query.

Similarly, OBOES was set up for maximization
of B-fiber activation as recorded by cuff electrodes.
Neurograms were recorded during stimulation and
processed as described in section 2.6. B-fiber activa-
tion was defined as the difference between maximum
and minimum value of the recording in the range
of 3.5-5.2ms. In order to mitigate side effects due
to strong stimulation currents, the objective function
was defined as the ratio of B-fiber activation (in mV)
and stimulation current (in A). This objective func-
tion encourages high levels of B-fiber activation and
simultaneously low levels of stimulation current.

There is no immediate ground truth for assess-
ing an online BO. However, a targeted BO aims for
a specific target response (for example see red points
in figure 6(b). Instead of a single input that leads
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to a maximum or minimum response the BO typic-
ally provides a range of inputs along the iso-response
curve with responses close to the target value. We
can therefore choose from a range of input values to
assess the BO. Ideally we would like to demonstrate
the accuracy of the BO’s surrogate function by estab-
lishing that the true response value falls within the
uncertainty range of one standard deviation above
and below the mean of the surrogate function GP
of the BO (see section 2.7). However, the experi-
mental response to VNS is affected by noise, and a
single response value is not necessarily representat-
ive of the true response. We therefore acquired three
responses 71 (x), r2(x),73(x) for the same input x and
used them to estimate the true response value p(x) at
that input by Bayesian inference. Instead of a single
value, such inference results in a probability distribu-
tion for p(x) (for details see supplementary material).
We consider the accuracy of the surrogate function as
sufficient if 95% of this probability mass lies within
the BO’s uncertainty range. This uncertainty range
is then shown to be a reliable measure of how close
the BO’s surrogate function is to the real response,
at least around the iso-response curve. We repeated
this calculation for three different input points along
this curve. For an illustration of this approach and an
example of the posterior distribution see figure 9(b).

For maximizing the B-fiber response over current,
we obtain a single optimal input instead of an iso-
response curve of possible inputs. So instead of testing
the accuracy of the surrogate function and the uncer-
tainty estimate at three different inputs along an iso-
response curve, we just tested the accuracy of the sur-
rogate function at the optimal input.

3. Results

In order to assess OBOES offline, realistic simulators
were constructed from neural data as reported in the
following section. Subsequently, the results of evalu-
ating the approach offline are discussed, followed by
sections detailing the results from applying OBOES
online in an intra-operative setting with alive anim-
als, controlling HR and B-fiber activation.

3.1. eCAPs simulators for porcine dataset

For assessing the optimization of neural fiber activ-
ations through VNS we built simulators emulating
eCAP responses. eCAPs for four different subjects A7
to A10 were obtained for this study. Figure 4 shows
eCAPs following VNS for subject A8 and Al0 for
pulse widths of 260 s and 500 us. Figure 5 shows the
result of fitting a GP to a three dimensional input
space of current, width, and time to provide simulated
voltage reading at this point for A10. Figures 5(a)
and (b) show the fit to the two different levels of pulse
widths available in the data set. However, notice that
the simulator can provide eCAPs for arbitrary inputs:
figure 5(c) shows a simulated eCAP response for pulse
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(a) Pulse width 260 s

the laryngeal muscle artifact is partly shown.

(b) Pulse width 500 ps

Figure 5. Simulator for neural response to stimulation in A10, porcine dataset. The GP simulator is derived from stimulation
responses in subject A10 (compare with figures 4(b) and (c) and notice that red lines correspond to the eCAPs of that figure). (a),
(b) Represent the time response for pulse widths 260 us and 500 us. (¢) Shows a simulated stimulation response surface for pulse
width 310 ps and a single stimulation response for pulse current 2.13 mA (blue), which was not observed in the data. The onset of

(‘/))7 ™
) “©
/'775 © 2

(c) Pulse width 310 ps

width of 310 us and current of 2.13 mA, neither of
which was covered by the original data. Figures of
eCAP simulators for A7, A8, and A9 are provided in
the supplementary material.

3.2. Offline assessment of BO using simulations
Parameter optimization for achieving a specific tar-
get response was assessed by applying targeted BO
to B-fiber activation as derived from eCAP simulat-
ors. One example of a B-fiber activation response is
shown in figure 6, which is obtained by measuring B-
fiber activation in neurograms provided by the eCAPs
simulator for A10 (figure 5) (similarly for A7-A9 in
the supplemental material). A targeted BO was set
up to find inputs that yield responses close to a tar-
get value of 0.04 mV for A10 (0.06, 0.15, 0.1 mV for
A7 to A9). BO was performed with a prior factor of
#=0.8 and and confidence bound factor of A = 2.0.
The approximation achieved by surrogate function
of the BO after 11 evaluations (including two initial
input points at the extreme of the search space in
magenta) is shown in figure 6(b). The iso-response
curve is indicated by red markers. Notice how closely
the BO’s surrogate approximation in figure 6(b) fol-
lows the true response in figure 6(a) after only a few
stimulation results. A small amount of uncertainty is
indicated by upper and lower surfaces close to the sur-
rogate approximation.

Similarly, GP simulators were constructed for
maximal eCAP activation in 12 subjects, P1 to P12,
from the rodent dataset. Figure 6(c) shows a simu-
lator for subject P10, while figure 6(d) shows the res-
ult of optimizing pulse current and width to achieve
maximal overall eCAP activation (examples for all 12
subjects can be found in the supplementary mater-
ial). Each BO was started by two initialization points
(in magenta) at the low and the high value corners
of the search spaces. The maximum suggested by the
BO is marked by a point in red. Uncertainty estimates

around the reconstructed response are indicated by
transparent surfaces. They are narrower in the region
of interest around the maximum response where BO
tends to provide more queries. BO was performed
with a prior factor k=0.8 and confidence bound
factor A = 4.0. Again notice the similarity between the
BO’s reconstructed surrogate function in figure 6(d)
compared to the true response in figure 6(c), as well
as the BO’s ability to find the the correct maximum
for a surface with several local maximima.

In order to evaluate the performance of a BO we
compared it to the optimization results from a grid
as well as a random search. The results are shown
in figure 7(a) for the porcine and in figure 7(b) for
the rodent dataset. The BO result (blue markers) is
compared to the performance of a random search
(gray markers). Also shown are the threshold val-
ues provided by the optima in grid searches. The
BO matches or outperforms all grid searches after 13
evaluations. The exceptional performance of the grid
searches and BO for P3, P4, and P5 in figure 7(b) is
explained by the fact that the optima are in or close to
one of the corners of the search space and therefore
easily captured in a grid search as well as the initial
BO evaluation.

Opverall, apart from the greater efficiency in terms
of the number of stimulations required, BO also
provides a more robust search result compared to grid
searches, which are sensitive to the grid layout relative
to the optimum input.

3.3. Online BO of HR change
Simulation results for BO were encouraging and it
was decided to apply OBOES online during surgery
on porcine subjects to achieve targeted changes in HR
through manipulation of VNS parameters.

A typical OBOES series with 11 evaluations is
shown in figure 8 for subject A10 targeting a AHR
of —10bpm. After two initial evaluations OBOES
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Figure 6. Optimization of B-fiber activation for a simulator for subject A10, porcine dataset, and subject P10, rodent dataset. (a)
B-fiber activation surface (ground truth) derived from neurograms generated by the simulator of figure 5, simulated activation
values in blue. (b) The surrogate function after a BO series optimizing for a target value of 0.04 (gray plane) requiring 11 BO
queries: 2 initial values, and 9 queries of the BO process. Points of that are closest to the target value along the iso-response curve
are shown in red. Responses to queries in black are numbered in order. (c¢) Maximal eCAP response surface, experimental
activation values from the rodent dataset in blue. (d) The surrogate function after a BO series optimizing for a maximum
response (red point) after 15 BO queries: 2 initial values, and 13 queries of the BO process. Lower and upper confidence surfaces
of the GP surrogate function at one standard deviation are transparent surfaces. BO results for the other subjects can be found in
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(d) Optimization for P10

suggests further VNS parameters. The response to the
stimulation is recorded, measured, and forwarded to
the algorithm. The progression in updating OBOES’s
surrogate function is shown. Notice a narrowing of
the upper and lower uncertainty surfaces (transpar-
ent) of the GP with a growing number of evaluations.
Similar figures for subject A1l can be found in the
supplementary material.

The final result for A10 is shown in figure 9 (and
for A1l in supplementary material). In order to assess
the quality of the surrogate surface three stimula-
tions for each of three different inputs were per-
formed (nine in total) as indicated in figure 9(a) by
blue markers. Figure 9(b) shows the deviations from
the predicted value for each of the three inputs. The
posterior probability distribution of the estimated
true experimental response is indicated. The expecta-
tion is that little probability mass p falls outside the

GP’s confidence bounds, which is indeed the case
(p < 0.001). In other words, the GP’s upper and lower
confidence surfaces provide reliable guidelines on
how much uncertainty stemming from measurement
noise and limited knowledge of the true response
function affects predicting the effects of optimal
stimulation. Since confidence bounds reduce with
an increasing number of OBOES steps, they poten-
tially provide a guideline when to stop the optimiza-
tion procedure, namely, when the prediction uncer-
tainty falls below a specific level of acceptance. One
of the test points is slightly offset from the target
value. This is due to a small error in the stimu-
lation input. However, it fortuitously demonstrates
that the confidence bounds typically get wider fur-
ther away from the target, since they fall in a less
explored region, while still providing valid confidence
limits.
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Figure 7. Relative error of BO optimization compared to grid and random optimization. The relative error (blue markers) is
relative to the optimal value. For comparison, the results of a random search are shown (gray markers) as mean over ten runs
(with standard error of the mean indicated). Thresholds we expect the BO to reach are provided by optimizing over two grids: the
optimum for the original experimental grid (black line) and for a 6 x 6 grid (gray line) spanning the input space with 36 points.
(a) Evaluation on simulators from subjects A7 to A10, porcine dataset (compare with figures 6(a) and (b) for A10). Optimizations
were for target values of 0.06, 0.15, 0.1, 0.04 mV for A7 to A10. The experimental data grids were of sizes 33, 34, 20, and 32 for A7
to A10. (b) Evaluation on simulators from subjects P1 to P2, rodent dataset. Optimization was for a maximum value. The
experimental data grids were all of size 27 (4 X 8).

3.4. Online BO of B fiber activation

The parasympathetic effect of B-fiber activation on
HR is widely accepted (Qing ef al 2018a). Figure 10
shows a comparison of the effect of stimulation cur-
rent with that of B-fiber activation on AHR in sub-
ject A10. This suggests that optimizing B-fiber activa-
tion in place of HR is a viable alternative to optimizing
HR directly.

To avoid side effects the total stimulation charge
needs to be controlled. In the OBOES experiment of
figure 11 we aimed to maximize B-fiber activation
while minimizing the stimulation current (sequential

figures illustrating this optimization in supplement-
ary materials). A way to achieve that is by maximizing
the ratio between activation and current. As expected
the maximum is achieved around 1500 pA, away from
the upper limit that was put on the current by the elec-
trophysiologist. The pulse width was not considered
a major cause of potential side effects and was not
incorporated as a constraint into the objective func-
tion of the BO (i.e. the ratio between B-fiber activa-
tion and pulse current). The objective function there-
fore increases monotonically with the pulse width
and the optimum is reached at the maximum of its

12



I0OP Publishing

J. Neural Eng. 21 (2024) 026019

L Wernisch et al

Figure 8. Online OBOES series for subject A10. A series of nine BO steps from two initialization points is shown with a target HR
change of —10 pm (gray plane). The middle surface represents the mean of the fitted GP, the upper and lower surfaces the upper
and lower confidence bound one standard deviation away. Markers shown: observed experimental HR changes in black with
numbering in order of queries, the BO query point (magenta) at that stage, potential input points within 0.3 bpm of the

target along the iso-response curve (red).

allowed range, at 500 us. Figure 11(b) demonstrates
that the GP confidence range provides a reliable
estimate of the uncertainty: the probability p that the
true response, as estimated from three test points, lies
outside the range is negligible (p < 0.001). However,
although within the uncertainty range, some under-
estimation bias by the GP of the response is
noticeable.

4. Discussion

To our knowledge the OBOES framework presen-
ted in this study is the first example of achiev-
ing targeted changes in HR and maximizing specific
fiber activations efficiently through joint optimiza-
tion of VNS parameters in alive animals. We also
present a comprehensive cloud based R&D system
enabling real time automated data collection, analysis

and optimization. Furthermore, we present a realistic
simulation framework modeling responses to VNS.
We demonstrate the usage of such simulation models
for the development and testing of parameter optim-
ization procedures for VNS.

4.1. Performance of OBOES

Current state-of-the-art clinical VNS systems use
cardiovascular responses (Ardell et al 2017a) or
tolerance-based dosing strategies (Premchand et al
2014) to guide VNS parameter choices. This is typic-
ally done on a reduced set of parameters, for example,
through dose titration using only stimulation current.
If multiple parameters are used, they are explored in a
rigid order (LivaNova 2021). The neural stimulation
optimization using a Bayesian method, BO as sugges-
ted in this study, is more flexible and efficient, partic-
ularly for high-dimensional parameter spaces.

13



10P Publishing

J. Neural Eng. 21 (2024) 026019

L Wernisch et al

(a) BO surrogate function A10

less than 0.001 in all cases.

Figure 9. Final test responses after OBOES for target AHR for A10. The surrogate models after 11 evaluations for a target HR
change of —10 bpm (gray plane) are shown (including two initial points). (a) three responses (blue markers) were measured for
each of three different inputs: two selected along the iso-response curve (red), one slightly off target. (b) Statistical performance of
the test points. The posterior probability distributions of the estimated true HR response based on the three measurements are
shown for each evaluation set. The Gaussian process credible interval of one standard deviation represented by transparent upper
and lower surfaces in (a) is indicated with broken lines in (b). The probability that the true response falls outside this interval is
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Figure 10. Dependency of AHR on pulse current and B fiber activation for stimulations in A10. The frequency is indicated by
marker size (smallest 2 Hz, largest 20 Hz). The target AHR is indicated by a horizontal line. BO query (black, round) and test
stimulations (blue, square) from figure 9 show a clear relationship of AHR to pulse current (Spearman’s rank correlation 0.85,
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BO is a well-developed and established ML tech-
nique (Kushner 1964) geared toward optimizing
an unknown function via iterative queries. These
queries, defined by the algorithm, are designed to
both explore and optimize the function. Numerous
empirical studies have employed BO to fine-tune
neuromodulation parameters (Desautels et al 2015,
Ashmaig et al 2018, Laferriere et al 2020, Park et al
2020, Losanno et al 2021, Stieve et al 2023). Several
simulation studies on neuromodulation models, that
enable a precise comparison with some ground truth,
show its promising performance when optimizing
parameters (Grado et al 2018, Mao et al 2023, Aiello
et al 2023). Evaluations using simulated data have
consistently showcased BO’s superior performance

compared to random and grid searches—a point we
highlight in this study as well—or greedy strategies
(Bonizzato et al 2023). We emphasize that this study’s
primary objective was not to pioneer a completely
new approach for optimizing nerve stimulations.
Instead, we expand the range of previous applications
of BO in neuromodulation by showcasing its effic-
acy when applied to VNS for controlling physiological
states and eCAP activations in simulations as well as
real-time experiments.

GPs are recognized for their resilience against
the curse of dimensionality—the increasing demand
for larger numbers of sample points in higher
dimensions—by imposing smoothness assumptions
on the response function (Spigler et al 2020).
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Figure 11. Response surface after a OBOES for maximum B-fiber activation over current for A12. (a) The surrogate model after
13 evaluations with confidence surfaces of 1.5 standard deviations. After OBOES, three test responses (blue markers) were
measured around the optimum. (b) Statistical performance of the test points. The posterior distributions of the estimated true
activation over current response based on the three test measurements. The Gaussian process credible interval of 1.5 standard
deviation represented by transparent surfaces in (a) is indicated with broken lines in (b). The probability that the true response

falls outside this interval is less than 0.001.

Consequently, BO leveraging GPs becomes an ideal
choice for optimizing functions in high-dimensional
input spaces. Since the current study we began to
apply OBOES to five dimensional parameter spaces
including discrete spaces such as electrode loca-
tions, which will be reported on in future studies.
Due to its speed of optimization, OBOES is better
suited to cope with variation in bioelectronic coup-
ling of the electrode—nerve interface at implantation
or changes at the interface over time, for example,
with inflammation (Qiao et al 2016). Given the fre-
quent need to adapt parameter settings in response
to changes at the nerve-cuff interface, there is a com-
pelling motivation for an adjustment approach, such
as OBOES, that minimizes the number of required
stimulations.

Our choice to develop and test optimization
algorithms through simulations, derived from real
data, proved invaluable. Not only did it offer a sand-
box environment for refining our algorithm, but it
also highlighted potential challenges and pitfalls we
might encounter in real-time experimental settings.
For increased realism we derived response functions
for the simulations from actual data. This was for the
purpose of enhancing realism rather than replicating
the exact true response function. Achieving a wholly
accurate representation would demand rigorous vet-
ting and testing of assumptions, a process beyond our
primary study’s scope. Instead, we sought to capture
salient features of the true response, such as its overall
shape and noise characteristics. Capturing these fea-
tures via GP modeling offered a balance between mir-
roring genuine conditions and maintaining compu-
tational feasibility. They ensured that OBOES under-
went testing under conditions that resonated closely,
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albeit not perfectly, with the challenges of real-world
applications.

In the simulation studies, OBOES performed well
compared to grid searches and random searches in
terms of the number of steps to get close to an
optimum as well as the quality of the approximation
(figure 7 of section 3.2). The aim of this study, how-
ever, was not necessarily to demonstrate superiority
over alternative optimization approaches. There are
undoubtedly many approaches that perform compar-
ably in terms of requiring only a small number of
steps to reach an optimum, BO being one of them.
We opted for a BO approach because it (i) enables a
principled probabilistic way to integrate prior know-
ledge, e.g. about the smoothness of the response func-
tion, (ii) constructs an explicit model of the unknown
response function in the form of a surrogate function,
(iii) is less susceptible to increasing complexity with
increasing dimensions, the ‘curse of dimensionality’)
and (iv) provides information about the amount of
model uncertainty. This last property allows one, for
example, to assess the plausibility of the GP’s internal
surrogate model and to make a rational assessment of
the risk when relying on its predictions in a clinical
setting.

A BO approach also enables great flexibility in the
choice or design of the acquisition function, which
can be adapted to specific requirements. For example,
in this study we developed a variant, TCB, of an
acquisition function that allows a BO to home in
on an iso-response curve of inputs that result in the
same defined target value as responses. TCB turned
out to be very robust, in simulations as well as in
online settings, leading to fast convergence to an iso-
response set of inputs. An additional benefit of this
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approach is that the iso-response curve allows one
to pick preferred parameter sets with ancillary bene-
fits, for example, mitigating side effects or promoting
device battery life, while maintaining the same biolo-
gical response.

In this study, GP surrogate functions for OBOES
were constructed for each subject individually. We
experimented with GP models based on coregion-
alization kernels (Alvarez et al 2012). that allowed
us to share information between several subjects.
Such models showed promise when applied to sim-
ulated data by reducing the number of query evalu-
ations even further. However, the gain in efficiency
was only noticeable for simulated subjects with sim-
ilar responses. In this study as well as for further
experiments on life subjects—as discussed in greater
detail in the companion manuscript Berthon et al
(2023)—the responses from different subjects to the
same stimulation inputs typically diverged consider-
ably and the added complexity of applying a model
based on multilevel modeling or coregionalization
did not seem to outweigh the small loss in efficiency
compared to a subject specific GP model.

4.2. Online implementations for medical devices
The ITx Platform of section 2.3 shows two services
where a ML model can be deployed: either on the
acquisition hardware, an edge deployment, or in
the ITx Platform portal, a cloud deployment. We
opted for the second choice, since we aimed for a
proof-of-principle demonstration. A cloud deploy-
ment allowed us to manually adjust settings and
algorithms and to control stimulus parameters if
intervention was deemed necessary. The online BO
experiments, however, were surprisingly stable and
were obtained with little manual intervention. The
use of GP parameter priors stabilized their optim-
ization, particularly in the early phases of the BO
where only few data points are available. We have
since deployed OBOES directly on the acquisition
hardware to run fully automated with the option to
monitor and intervene manually if necessary (results
not shown here).

Safety considerations are paramount for med-
ical devices, and those leveraging ML techniques are
no exception. BO is a probabilistic method that bal-
ances exploration with optimization of an unknown
response function with as few data points as pos-
sible. It is possible to tweak the balance between
optimization and exploration through the confidence
bound factor A of section 2.10. Here we set the factor
to a constant that performed well in simulations.
Typically the greatest uncertainty tends to occur at
the more extreme values of the input space. There
exists a risk that high input values for stimulations
may lead to intolerable side effects. In our current
implementation of OBOES, we address this by prede-
fining constraints on the input space in collaboration
with an electrophysiologist overseeing the algorithm’s
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application. As long as the patient’s responses stay
within acceptable limits, the size of the input space
can be increased gradually, allowing higher charge
stimulations to be explored by the model. An altern-
ative approach, which we will explore in future, could
exploit the GPs’ natural handling of uncertainty to
pursue dose titration in a safe way (Berkenkamp et al
2016): analysis of the surrogate function can in prin-
ciple suggest safe extensions of the search space con-
strained by a risk model that balances expansion of
the search space with safety considerations.

4.3. Neural biomarkers for physiological effects
Anesthetics are known to severely dampen the barore-
flex and other hemodynamic indices (Ahmed et al
2021). We observed that to maintain the anesthetic
plane, propofol administration occasionally required
adjustment. During grid searches in online experi-
ments, this sometimes drastically changed the mag-
nitude of bradycardia for fixed stimulation paramet-
ers. In contrast, nerve recruitment itself is much more
robust to anesthesia or the severity of heart disease.
Furthermore, neurograms can be explored rapidly
and with few physiological side effects by keeping
pulse numbers low (by lowering frequency and train
duration). For an intraoperative procedure, optimiz-
ing neural biomarkers is thus preferable over optim-
izing physiological ones. We investigate the relation-
ship between eCAPs and physiological responses in
detail in a companion study (Berthon et al 2023).
We have shown that OBOES is suitable for optimiz-
ing B-fiber activation, a prime example for an indir-
ect optimization of HR using a neural biomarker.
We also hypothesize that neural biomarkers, based
on their enhanced reliability as measures of mech-
anism engagement and bioelectronic coupling, make
good candidates for true closed-loop neuromodula-
tion therapies. Of course, utilizing neural biomarkers
in this way depends on the ability to model the rela-
tionship between neural and physiological responses
to neural stimulation in a precise way, which is the
subject of Berthon et al (2023).

4.4. Clinical use of intraoperative optimization
VNS parameter optimization for neural or physiolo-
gical targets can be performed any time after the
implantation of the device. We have successfully per-
formed such optimizations in an awake, freely mov-
ing animal (as will be reported in a forthcoming
study).

However, intraoperative optimization during
clinical implantation, while monitoring fiber engage-
ment, could provide immediate objective feedback
on (1) the successful installation of the stimulation
lead, (2) whether the intended fiber group is being
activated and (3) a range of stimulation parameters
(on the iso-response line) that can engage the tar-
get mechanism. After implantation, device titration
can be guided by the range of stimulation parameters
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known to generate on-target therapeutic effects, as
established during implantation. This could drastic-
ally reduce the number of clinical interactions needed
following device implantation and the overall time
required to achieve optimal postoperative dosing.

4.5. Limitations and future directions

A limitation of the current study is that OBOES was
performed on anesthetized subjects and caution is
necessary when extrapolating the findings to awake
individuals. We are actively exploring the efficacy of
OBOES on awake subjects and anticipate presenting
these findings in subsequent publications. One chal-
lenge in studying awake subjects is acquiring con-
sistent physiological measurements exclusively linked
to neural stimulation; this is due to increased inter-
ference from other external factors like movement.
A GP framework, in theory, is well suited to tackle
such challenges, for example, by incorporating addi-
tional external data, such as readings from move-
ment sensors. However, this integration may complic-
ate measurement tools and computational processes.
Future experiments are essential to strike a balance
between accuracy on one hand and complexity of data
acquisition and processing on the other.

In this study, as well as in a companion
study (Berthon et al 2023), we noted considerable
variability in responses to stimulations, both between
subjects and within the same subject over time. While
the OBOES approach we have detailed assumes a con-
sistent physiological response throughout an optim-
ization run (relying only on data gathered during
that run), the versatility of the GP framework allows
for the inclusion of data from other subjects or past
optimization sessions. Preliminary tests with simu-
lated data indicate that an approach based on core-
gionalization kernels (Alvarez et al 2012) is able to
integrate data from multiple subjects. This integra-
tion can, in turn, reduce the number of BO steps
needed for a new subject, if prior data are available
for subjects with similar response patterns.This integ-
ration can, in turn, reduce the number of BO steps
needed, especially when database subjects exhibit
similar response patterns. Subjects presented in this
study, however, diverged too much in their responses
for multiple subject integration to improve BO estim-
ation sufficiently, when considering the additional
complexity of the approach.

While GP regression offers remarkable flexibility
in modeling diverse response functions, it does oper-
ate under certain assumptions (Rasmussen 2006). Of
particular practical significance are the assumptions
about the function’s smoothness and the nature and
magnitude of noise. Smoothness relates to the expec-
ted extent of response variability in the face of chan-
ging stimulation parameters: do small changes in
parameters have a large or small effect. GP regression
enables modeling of rougher or smoother responses
by a choice of kernel type and the length scale
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parameters. In contrast, noise relates to the vari-
ation observed in response to identical stimulation
inputs: unavoidable variation when repeating a simu-
lation. In our simulations and practical applications,
the finer details of the type of smoothness and the
exact probability distributions of noise had minimal
impact on the overall outcomes. Among a range of
kernel types we explored, squared exponential kernels
consistently produced stable and satisfactory results.
Moreover, assuming Gaussian noise not only proved
effective but also facilitated efficient estimation. Even
though hyperparameters for length scales and noise
can be estimated from data, we observed that putting
some broad prior constraints on them, as described
in the methods section, increased stability.

In this study, our emphasis was on two-
dimensional input spaces: combining pulse width and
current for B-fiber optimization, as well as frequency
and current for HR optimization. This approach was
primarily chosen for its simplicity and to allow for a
graphical representation of the progress of OBOES.
We are presently exploring the possibility of expand-
ing these parameter spaces. This includes parameters
such as train duration, multiple electrode locations,
pulse shapes (defined by a finite set of continuous
parameters), or the clustering of pulses into multiple
bursts, among others. As highlighted in Berthon et al
(2023), the output dimension could be expanded to
monitor potential side effects, such as bradypnea or
laryngeal spasms. This results in a multitask optim-
ization problem. How to deal with multiple tasks,
either by combining them into one target function,
or by maintaining several surrogate functions, will be
the subject of future studies.

5. Conclusion

Optimization of VNS parameters for optimizing a
target response, particularly in an intraoperative set-
ting, is challenging. We demonstrated that BO is well-
suited to support this task. For offline exploration
of a wide range of neural biomarkers, accurate sim-
ulation models based on Gaussian processes can be
derived from experimental data. For online optimiza-
tion, BO enables an efficient and accurate reconstruc-
tion and robust optimization of the response function
with comparatively few test stimulations.
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